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Software Composition Analysis

Software Composition Analysis (SCA)

• Identifying and managing the open-source third-party libraries (TPLs) contained in softwares


• Relying on SCA, developers can effectively track potential threats introduced to softwares 
(e.g., vulnerability propagation, license violation)


• Existing SCA techniques advance component identification by matching features between 
target software and collected TPLs based on their similarities



Dilemma: Feature Duplication
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Example of internal code clone

Internal Code Clone

• One TPL depends on other TPLs via code reuse within large-scale dataset


• Causing inevitable feature duplication across collected TPLs


• Compromising SCA by incurring false positives during feature matching



Centris: C/C++ Function-level SCA
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The workflow of Centris

Centris (ICSE’21)
• Performing TPL reuse detection to derive TPL dependency 

while extracting TPL code features

• Eliminating redundant features based on TPL dependency

• Constructing TPL database after elimination for online 

component identification

TPL Reuse Detection
• Utilizing birth time of duplicate functions between TPLs 

to help identify reused functions

• Recalling the dependency between TPLs when the ratio 

of reused functions surpasses a preset threshold



Research Questions
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RQ1: How does Centris perform in TPL reuse detection and SCA?

RQ2: What are the major factors that impact the performance of Centris?

Challenges
• Lack of evaluation for the accuracy of the derived TPL dependencies in Centris.

• Evaluation of how TPL dependency impacts the SCA is limited in Centris.

• To validate generalized contribution of TPL dependency to other evaluation setups.

• Accuracy of derived TPL dependencies

• Impact on the downstream binary-level SCA

• Effectiveness of function birth time

• Threshold-based recall



Study Setups
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Dataset Evaluation of SCA
1) Ground-truth TPL dependencies

2) Ground-truth SCA results

• Total 10,241 TPLs in dataset

• Manually labeled 2,150 TPL dependencies 

of top 1K mostly reused TPLs

• Total 128 binary files compiled with 75 C/C++ 
open-source software projects


• Parsing DWARF to derive contained components

• Adapting TPL dependency of Centris to binary-level SCA 
platform - BinaryAI developed by Tencent Security Keen Lab


• BinaryAI is now available at https://binaryai.net/

https://binaryai.net/


RQ1: Performance of Centris
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Accuracy of TPL reuse detection by Centris
SCA results with TPL dependency

Accuracy of TPL dependencies

Finding: The accuracy of TPL dependencies derived 
by Centris may not well generalize to other datasets.

Default version (threshold=0.10): 

Precision 35.71% , Recall 49.44%, F1 score 41.47%

Finding: While the redundant feature elimination based on TPL 
dependencies can advance the SCA results, Centris may be limited 
in leveraging the power of TPL reuse detection.

Impact on SCA
• Ground truth-1k increases precision from 25.76% to 45.90%

• Centris-1k increases precision to 32.44% while decreases 

recall from 56.34% to 50.71%



RQ2: Function Birth Time
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Birth time of reused functions from zlib

Code snippet in deflate.c of zlib

Finding: The inaccurate function birth time significantly 
compromises the accuracy of Centris for TPL reuse detection.

Function birth time
• Earliest tag time of function introduced to the repository

• Error-prone with elusive reasons, e.g., repository migration

• Causing most of the false positives (1,336 out of 1,914)

• Example: all functions in zlib share birth time of 2011 from 
commit-bcf78a2, while they were actually first introduced in 
1995 due to migration of repository


• Discussion: additional information (e.g., source directory) 
should be included to help identify the TPL dependency



RQ2: Threshold-based Recall
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Average reuse ratio TPL reuse distribution

Finding: The reuse ratio can be quite divergent for different TPL dependencies. Thus, a fixed 
threshold to denote the reuse ratio may not well generalize to different TPL dependencies.

Reuse ratio between TPLs
• Average reuse ratio enormously vary for different TPLs

• Reuse ratio can be distributed divergently among 

different dependencies for specific TPLs

Discussion
Two-phase recall: 1) initializing dependencies in a coarse-
grained manner 2) filtering invalid dependencies based on 
graph analysis with edges assigned reuse ratio as weight



Approach: TPLite
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The framework of TPLite

Function-level Origin TPL Detection

Graph-based Dependency Recall

• Modified Function Reuse Detection


• Hierarchical Path Matching


• TPL Metadata Resolving

• Coarse-grained Detection


• Centrality-based Filter



Function-level Origin TPL Detection
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1) Modified Function Reuse Detection

Objective: Identify origin TPL for each function

2) Hierarchical Path Matching

3) TPL Metadata Resolving

• Detecting similar functions due to modified reuse

• Based on existing token-based code clone detector

• Utilizing hierarchical path features to help identify the origin 
TPL since TPL reuse tends to retain structural similarity


• Still retaining TPL with earliest birth time as candidate

• Implementing parsers for header files, SBOM files and 
licenses to derive actual origin TPL out of candidates



Graph-based Dependency Recall
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1) Coarse-grained Detection

Objective: Two-phase recall to improve accuracy

2) Centrality-based Filter

• Dynamically deriving optimal reused ratios for different TPLs in a 
coarse-grained manner and retain all dependencies that satisfy
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• Nodes with high eigenvector centrality but low degree 
centrality indicates unstable relationships


• Eliminating dependencies pointing to the TPLs whose ratio of 
PageRank value to in-degree centrality after normalization 
exceeds a preset value



Evaluation: TPL Dependency
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Evaluation of TPL dependency

• TPLite enhances precision (35.71% to 88.33%) and recall (49.44% to 62.65%) compared with Centris


• FP analysis: absence of TPLs in current dataset / FN analysis: black-box reuse injected during linking


• Ablation study with two variants: Centris  / Centrisotd otd+cg



Evaluation: Binary-level SCA
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Time cost of SCA tools

The SCA results

Evaluation of SCA
• TPLite increases precision (25.76% to 75.90%) and recall 

(56.34% to 64.17%) when integrated to BinaryAI


• TPLite dominates performance among binary SCA tools, and 
even outperforms BDBA (75.90% vs.72.46% precision, 
64.17% vs. 58.55% recall)


• Additional overhead of TPLite is tolerable for both offline 
TPL reuse detection and online SCA

(a) TPL reuse detection (b) SCA

Subjects
• B2SFinder: state-of-the-art academic binary SCA tool

• Black Duck Binary Analysis (BDBA): well-adopted commercial 

SCA product by Synopsys

• Scantist: commercial SCA platform including binary analysis



Conclusion
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Extensive Study

Technique Improvement
• We propose TPLite based on the study findings and we are the first to adapt the TPL dependencies 

to the binary-level SCA, both of them outperform the existing state-of-the-art techniques


• Open-sourced technique: https://github.com/Tricker-z/TPLite

• Study of Centris, the state-of-the-art SCA technique in the C/C++ ecosystem 


• Accuracy of TPL dependencies and impact on SCA may not well generalize to our evaluation dataset


• Function birth time and threshold-based recall can be the factors to degrade the performance

https://github.com/Tricker-z/TPLite
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