
Third-Party Library Dependency for
Large-Scale SCA in the C/C++ Ecosystem:

How Far Are We?
Ling Jiang , Hengchen Yuan , Qiyi Tang , Sen Nie , Shi Wu , Yuqun Zhang* * † † † *

Southern University of Science and Technology

 Tencent Security Keen Lab

*
†

01

Software Composition Analysis

Software Composition Analysis (SCA)

• Identifying and managing the open-source third-party libraries (TPLs) contained in softwares

• Relying on SCA, developers can effectively track potential threats introduced to softwares
(e.g., vulnerability propagation, license violation)

• Existing SCA techniques advance component identification by matching features between
target software and collected TPLs based on their similarities

Dilemma: Feature Duplication

02

Example of internal code clone

Internal Code Clone

• One TPL depends on other TPLs via code reuse within large-scale dataset

• Causing inevitable feature duplication across collected TPLs

• Compromising SCA by incurring false positives during feature matching

Centris: C/C++ Function-level SCA

03

The workflow of Centris

Centris (ICSE’21)
• Performing TPL reuse detection to derive TPL dependency

while extracting TPL code features

• Eliminating redundant features based on TPL dependency

• Constructing TPL database after elimination for online

component identification

TPL Reuse Detection
• Utilizing birth time of duplicate functions between TPLs

to help identify reused functions

• Recalling the dependency between TPLs when the ratio

of reused functions surpasses a preset threshold

Research Questions

04

RQ1: How does Centris perform in TPL reuse detection and SCA?

RQ2: What are the major factors that impact the performance of Centris?

Challenges
• Lack of evaluation for the accuracy of the derived TPL dependencies in Centris.

• Evaluation of how TPL dependency impacts the SCA is limited in Centris.

• To validate generalized contribution of TPL dependency to other evaluation setups.

• Accuracy of derived TPL dependencies

• Impact on the downstream binary-level SCA

• Effectiveness of function birth time

• Threshold-based recall

Study Setups

05

Dataset Evaluation of SCA
1) Ground-truth TPL dependencies

2) Ground-truth SCA results

• Total 10,241 TPLs in dataset

• Manually labeled 2,150 TPL dependencies

of top 1K mostly reused TPLs

• Total 128 binary files compiled with 75 C/C++
open-source software projects

• Parsing DWARF to derive contained components

• Adapting TPL dependency of Centris to binary-level SCA
platform - BinaryAI developed by Tencent Security Keen Lab

• BinaryAI is now available at https://binaryai.net/

https://binaryai.net/

RQ1: Performance of Centris

06

Accuracy of TPL reuse detection by Centris
SCA results with TPL dependency

Accuracy of TPL dependencies

Finding: The accuracy of TPL dependencies derived
by Centris may not well generalize to other datasets.

Default version (threshold=0.10):

Precision 35.71% , Recall 49.44%, F1 score 41.47%

Finding: While the redundant feature elimination based on TPL
dependencies can advance the SCA results, Centris may be limited
in leveraging the power of TPL reuse detection.

Impact on SCA
• Ground truth-1k increases precision from 25.76% to 45.90%

• Centris-1k increases precision to 32.44% while decreases

recall from 56.34% to 50.71%

RQ2: Function Birth Time

07

Birth time of reused functions from zlib

Code snippet in deflate.c of zlib

Finding: The inaccurate function birth time significantly
compromises the accuracy of Centris for TPL reuse detection.

Function birth time
• Earliest tag time of function introduced to the repository

• Error-prone with elusive reasons, e.g., repository migration

• Causing most of the false positives (1,336 out of 1,914)

• Example: all functions in zlib share birth time of 2011 from
commit-bcf78a2, while they were actually first introduced in
1995 due to migration of repository

• Discussion: additional information (e.g., source directory)
should be included to help identify the TPL dependency

RQ2: Threshold-based Recall

08

Average reuse ratio TPL reuse distribution

Finding: The reuse ratio can be quite divergent for different TPL dependencies. Thus, a fixed
threshold to denote the reuse ratio may not well generalize to different TPL dependencies.

Reuse ratio between TPLs
• Average reuse ratio enormously vary for different TPLs

• Reuse ratio can be distributed divergently among

different dependencies for specific TPLs

Discussion
Two-phase recall: 1) initializing dependencies in a coarse-
grained manner 2) filtering invalid dependencies based on
graph analysis with edges assigned reuse ratio as weight

Approach: TPLite

09

The framework of TPLite

Function-level Origin TPL Detection

Graph-based Dependency Recall

• Modified Function Reuse Detection

• Hierarchical Path Matching

• TPL Metadata Resolving

• Coarse-grained Detection

• Centrality-based Filter

Function-level Origin TPL Detection

10

1) Modified Function Reuse Detection

Objective: Identify origin TPL for each function

2) Hierarchical Path Matching

3) TPL Metadata Resolving

• Detecting similar functions due to modified reuse

• Based on existing token-based code clone detector

• Utilizing hierarchical path features to help identify the origin
TPL since TPL reuse tends to retain structural similarity

• Still retaining TPL with earliest birth time as candidate

• Implementing parsers for header files, SBOM files and
licenses to derive actual origin TPL out of candidates

Graph-based Dependency Recall

11

1) Coarse-grained Detection

Objective: Two-phase recall to improve accuracy

2) Centrality-based Filter

• Dynamically deriving optimal reused ratios for different TPLs in a
coarse-grained manner and retain all dependencies that satisfy

 |ω |
|R |

> δ ⋅
|R |
|Rφ |

• Nodes with high eigenvector centrality but low degree
centrality indicates unstable relationships

• Eliminating dependencies pointing to the TPLs whose ratio of
PageRank value to in-degree centrality after normalization
exceeds a preset value

Evaluation: TPL Dependency

12

Evaluation of TPL dependency

• TPLite enhances precision (35.71% to 88.33%) and recall (49.44% to 62.65%) compared with Centris

• FP analysis: absence of TPLs in current dataset / FN analysis: black-box reuse injected during linking

• Ablation study with two variants: Centris / Centrisotd otd+cg

Evaluation: Binary-level SCA

13

Time cost of SCA tools

The SCA results

Evaluation of SCA
• TPLite increases precision (25.76% to 75.90%) and recall

(56.34% to 64.17%) when integrated to BinaryAI

• TPLite dominates performance among binary SCA tools, and
even outperforms BDBA (75.90% vs.72.46% precision,
64.17% vs. 58.55% recall)

• Additional overhead of TPLite is tolerable for both offline
TPL reuse detection and online SCA

(a) TPL reuse detection (b) SCA

Subjects
• B2SFinder: state-of-the-art academic binary SCA tool

• Black Duck Binary Analysis (BDBA): well-adopted commercial

SCA product by Synopsys

• Scantist: commercial SCA platform including binary analysis

Conclusion

14

Extensive Study

Technique Improvement
• We propose TPLite based on the study findings and we are the first to adapt the TPL dependencies

to the binary-level SCA, both of them outperform the existing state-of-the-art techniques

• Open-sourced technique: https://github.com/Tricker-z/TPLite

• Study of Centris, the state-of-the-art SCA technique in the C/C++ ecosystem

• Accuracy of TPL dependencies and impact on SCA may not well generalize to our evaluation dataset

• Function birth time and threshold-based recall can be the factors to degrade the performance

https://github.com/Tricker-z/TPLite

Q & AThanks

