Third-Party Library Dependency for
Large-Scale SCA in the C/C++ Ecosystem:
How Far Are We?

Ling Jiang*, Hengchen Yuan*, Qiyi Tang', Sen Nie", Shi Wu', Yuqun Zhang*

*Southern University of Science and Technology
"Tencent Security Keen Lab

NESC D=
. =S ur =
KEEN
SECURITY LAB

Software Composition Analysis

Software Composition Analysis (SCA)

e Identifying and managing the open-source third-party libraries (TPLs) contained in softwares

e Relying on SCA, developers can effectively track potential threats introduced to softwares
(e.g., vulnerability propagation, license violation)

e Existing SCA techniques advance component identification by matching features between
target software and collected TPLs based on their similarities

Approved components
Developer downloads

Code reuse

Commercial apps

Third-party libraries

Outsourced development

SCA |

01

Dilemma: Feature Duplication

Internal Code Clone

* One TPL depends on other TPLs via code reuse within large-scale dataset
 (ausing inevitable feature duplication across collected TPLs

e Compromising SCA by incurring false positives during feature matching

NodeJS i
@ nodejs node/deps/zlib (.

I I I : :
¥ v v openMVG src/thlrd_party/zllb> Jlib

assimp/contrib/zlib’

assimp zlib

Example of internal code clone

02

Centris: C/C++ Function-level SCA

mTTTTTSTTSmsomsosmoossooooooooo- . o c
, 1) 3 S
| TPL Feature E j | S s S
| Extraction l T =
n / TPL Features — *%' g > S
: TPL Reuse O—»‘ T E 2
: Detection | 1T
TPL Dataset \\ TPL Dependency | § §
_________________________________ - m —

LTI . Stage 1: Construction of TPL Database (offline)

: E . . o—
Target Software || Library Version oO— —
. | |[dentification |[dentification
| | < >, o—
: Y
@ i Feature Matching Component List

Stage 2: Component Identification (online)

—_— e e - = -

The workflow of Centris

Centris (ICSE’21)

-E

TPL Database ¢

C\/c

Bug Propagation

License Violation o

Performing TPL reuse detection to derive TPL dependency
while extracting TPL code features

Eliminating redundant features based on TPL dependency
Constructing TPL database after elimination for online
component 1dentification

= TPL Reuse Detection

Utilizing birth time of duplicate functions between TPLs
to help 1dentify reused functions

Recalling the dependency between TPLs when the ratio
of reused functions surpasses a preset threshold

03

Research Questions

Challenges
e Lack of evaluation for the accuracy of the derived TPL dependencies in Centris.
e Evaluation of how TPL dependency impacts the SCA 1s limited in Centris.

e To validate generalized contribution of TPL dependency to other evaluation setups.

RQ1: How does Centris perform in TPL reuse detection and SCA?’

 Accuracy of dertved TPL dependencies

 Impact on the downstream binary-level SCA

RQO2: What are the major factors that impact the performance of Centris?

o Effectiveness of function birth time
e Threshold-based recall

04

Study Setups

Dataset Evaluation of SCA

1) Ground-truth TPL dependencies e Adapting TPL dependency of Centris to binary-level SCA

* Total 10,241 TPLs 1n dataset platform - BinaryAl developed by Tencent Security Keen Lab

* Manually labeled 2,150 TPL dependencies BinaryAl 1s now available at https://binaryai.net/
of top 1K mostly reused TPLs

2) G r O u n d - tr u th S C A r es u I ts bbe34331e5068d7dc5b990fbef10002358b4ef8e07ab92c0d5620ed60fc36b30

e Total 128 binary files compiled with 75 C/C++ @

858.2 KB 2023-02-0119:10:20 2023-07-06 01:28:16 application/x-sharedlib

open-source software projects

Composition Details ASCII string Checksec Properties Pro features 31D
e Parsing DWAREF to derive contained components X |
omponents Professiona |
=
Software Binary Version Sys/Arch’ #TPLs Sample TPLs
cjson v1.7.15 Ultralightweight JSON parser in ANSI C https://github.com/DaveGamble/cJSON/tree/v1.7.151
terarkdb db_bench v1.3.6 archlinux/x86_64 15 bzip2, zlib, 1z4, xxHash
. . . . libsodium 1.0.18 A modern, portable, easy to use crypto library. https://github.com/jedisct1/libsodium/tree/1.0.18 I
ClickHouse clickhouse v22.1.2.2 macOS/arm64 61 libxml2, grpc, libexpat
TIC'SO tiCSO.eXC VO.90. 1723 WindOWS/X86_64 1 5 blip-buf, libpng, dirent mbed_tls mbedtls-2.23.0 An open source, portable, easy to use, readable and flexible SSL I... https://github.com/ARMmbed/mbedtls/tree/mbedtls-2.23.0 g
kvrocks kvrocks v2.0.5 ubuntu/i386 12 glibc, libevent, rocksdb
st-device-sdk-c v1.7.0 SmartThings SDK for Direct Connected Devices for C https://github.com/SmartThingsCommunity/st-device-sdk-c/tr... Ig

Tendis tendisplus v2.4.3 ubuntu/x86_64 15 glibc, rapidjson, snappy

T The system and architecture applied to compile the binary

05

https://binaryai.net/

RQ1: Performance of Centris

Accuracy of TPL dependencies Impact on SCA
Default version (threshold=0.10): e Ground truth-1k increases precision from 25.76% to 45.90%
Precision 35.71% , Recall 49.44%, F1 score 41.47% e (Centris-1k increases precision to 32.44% while decreases

recall from 56.34% to 50.71%

Verification of TPL dependency

Threshold 100% ¢
Total #TP #FP #FN Precision(%) Recall(%) F1(%) [. Precision Recall B F1]
0.75 59 37 22 2,113 62.71 1.72 3.35 5% |
0.50 261 159 102 1,991 60.92 7.40 13.20 S
0.20 1,611 662 949 1,488 41.09 30.79 35.20 50% L
0.15 2,118 839 1,279 1,311 39.61 39.02 39.31
0.10 2,977 1,063 1,914 1,087 35.71 49.44 41.47 o050 |
0.05 4,349 1,300 3,049 850 29.89 60.47 40.01
0.01 8,447 1,491 6,956 659 17.65 69.35 28.14 . l

No dependency Ground truth-1k Centris-1k Centris-10k

Accuracy of TPL reuse detection by Centris
Y y SCA results with TPL dependency

Finding: The accuracy of TPL dependencies derived

by Centris may not well generalize to other datasets. Finding: While the redundant feature elimination based on TPL

dependencies can advance the SCA results, Centris may be limited
in leveraging the power of TPL reuse detection.

06

RQ2: Function Birth Time

Function birth time

/* deflate.c,v1.3 1995/04/10 16:03:45 */
#include "deflate.h"

 Earliest tag time of function introduced to the repository

int deflatelInit (z_stream *strm, int level) {...}

e Error-prone with elusive reasons, e.g., repository migration I e lote e e fraeny ¢
. £ ‘4 int deflateEnd (z_stream *strm) {...}
e (Causing most of the false positives (1,336 out of 1,914) int deflateCopy (2. stream sdest. ». stream *source) {...}

Code snippet in deflate.c of zlib

 Example: all functions in z/ib share birth time of 2011 from
commit-bcf78a2, while they were actually first introduced 1n — —
1 995 d ¢ . t f t TPL Name Source file directories Birth time
uc 10 migration ol repository rsync zlib/deflate.c 1998-05-14 07:22:45
wxWidgets src/zlib/deflate.c 1998-05-20 14:02:15
. gdal frmts/zlib/deflate.c 2001-09-15 21:50:31

should be included to help identify the TPL dependency

llvm-project

llvm/runtime/zlib/deflate.c

2004-03-19 21:59:23

CMake Utilities/cmzlib/deflate.c 2006-04-18 20:40:40
libpng deflate.c 2009-04-16 15:46:37
tigervnc common/zlib/deflate.c 2009-04-30 11:41:03
Finding: The inaccurate function birth time significantly lzllli’l‘:’ ebsockets ngllj; ::1?321’0“/ Zlib/detlate.c ;8118‘;?3 82122?

compromises the

accuracy of Centris for TPL reuse detection.

Birth time of reused functions from zlib

07

RQ2: Threshold-based Recall

Reuse ratio between TPLs Discussion
e Average reuse ratio enormously vary for different TPLs Two-phase recall: 1) intializing dependencies 1n a coarse-
* Reuse ratio can be distributed divergently among grained manner 2) filtering invalid dependencies based on
different dependencies for specific TPLs graph analysis with edges assigned reuse ratio as weight
30 116 0 ®
- — % 60 - .
B = ®
. s | e T
s 25 € 40
E = ¢
3 42 TPLs: - -
{05 S V/avg S 1} § 20 -
é I
0.5 0.4 0.3 0.2 0.1 0 zlib googletest sqlite lua catch2
Average reuse ratio TPL reuse distribution

Finding: The reuse ratio can be quite divergent for different TPL dependencies. Thus, a fixed
threshold to denote the reuse ratio may not well generalize to different TPL dependencies.

08

Approach: TPLite

e

' Function Signature | Coarse-grained
Detection - . = .
P | Function-level Origin TPL Detection
Reuse Detection
, ' i?p « Modified Function Reuse Detection
birth time . source dirs . . .
[1998/05/14 ZLib/deflate. cu « Hierarchical Path Matching

0 u Hierarchical Path Matching B —— |
' TPL Candldates’ ' + PageRank centrality ' TPL Metadata Resolving

TPL Dataset I c o
trality- It
Header SBOM License entrailty lase eer TPL Dependency

TPL Metadata Resolving

y gj? Graph-based Dependency Recall

Origin TPL » (Coarse-grained Detection
Stage 1: Function-level Stage 2: Graph-based C Centrality_based Filter
Origin TPL Detection Dependency Recall
The framework of TPLite

09

Function-level Origin TPL Detection

Ob.i eCti ve. I den ti fy or i g i n TP L f or eaCh f un Cti on Algorithm 1: Function-level Origin TPL Detection

Input: func; > Source code of function

Result: origin_tpl
Function DetectOriginTPL:
similar_funcs «— DetectModifiedReuse(func) ; » Token-based detection

1) Modified Function Reuse Detection

candidate_tpls < set()

e Detecting similar functions due to modified reuse

for f; in similar_funcs do

source_dirs <— ExtractSourcePath(tpls_f;, f;) ;> Across all versions
terms_count < ()

for p; in source_dirs do
terms <— PathHierarchyTokenizer(p;)

1
3
 Based on existing token-based code clone detector : tpls_f; — set of TPLs containing the function f;
6
7
8
9

2) Hierarchical Path Matching rarehT
10 terms_count.upaate(terms
e Utilizing hierarchical path features to help 1dentify the origin u end

12 terms_sort < Sort(terms_count) ; > Sort terms by frequency
TPL since TPL reuse tends to retain structural similarity 1 for ¢; in terms_sort do
] o .]) .) 14 if t; contains the name of TPL in tpl_f; then
e Still retaining TPL with earliest birth time as candidate 1 tpl_path « earliest TPL with the name in t;
16 candidate_tpls.add(tpl_path); > Based on source dirs
17 break
18 end
3) TPL Metadata Resolving 1 end
20 tpl_time «— TPL with the earliest birth time ¢ (¢pl, f;) in tpls_f;
o Implementlng parsers for header ﬁleS, SBOM ﬁles and 21 candidate_tpls.add(tpl_time); > Based on birth time as Centris
22 end
licenses to derive actual origin TPL out of candidates »s | origin_tpl — ResolveMeta(candidate_tpls); + Header, SEOM, License
24 return

10

Graph-based Dependency Recall

Objective: Two-phase recall to improve accuracy

1) Coarse-grained Detection

 Dynamically deriving optimal reused ratios for different TPLs in a
coarse-grained manner and retain all dependencies that satisty
% |R|

— >0
R IR, |

2) Centrality-based Filter

 Nodes with high eigenvector centrality but low degree
centrality indicates unstable relationships
 Eliminating dependencies pointing to the TPLs whose ratio of

PageRank value to in-degree centrality after normalization
exceeds a preset value

Algorithm 2: Graph-based Dependency Recall

1
2
3
4
5
6
7
8
9

10
11

12
13

14
15

16
17

18
19
20

21
22
23

24
25

26

Input: TPL dataset tpl_set

Result: tpl_dependencies

Function DependencyRecall:

tpl_dependencies «—

for tpls, tpl, € tpl set X tpl_set do

w « reused functions from tpls to tpl,

if |w| > 0 and CoarseGrainedCheck(tpls, tpl,) then
R « set of functions of tpl,
tpl_dependencies.add_edge(tpls, tpl,, weight=|w|/|R|)

end

end

CentralityFilter(tpl_dependencies)

return

Function CentralityFilter(tpl_dependencies):

tply_set «— ()

centrality_indegree «— InDegreeCentrality(tpl_dependencies)
centrality _pagerank «— PageRank(tpl_dependencies)

for tpl in tpl dependencies.nodes do
if Normalize(centrality_pagerank[tpl]) /

Normalize(centrality indegree[tpl]) > € then
| tply_set.add(tpl)

end

end

for tpls, tpl, in tpl dependencies.edges do

if in-degree(tpls) > n and tpl, € tpl,_set then
tpl_dependencies.delete(tpls, tpl,)

end

end

return

11

Evaluation: TPL Dependency

Evaluation of TPL dependency

e TPLite enhances precision (35.71% to 88.33%) and recall (49.44% to 62.65%) compared with Centris
 FP analysis: absence of TPLs in current dataset / FN_analysis: black-box reuse injected during linking

o Ablation study with two variants: Centris,; / Centris,;;, .,

Metrics of TPL dependency

Tool

Total #TP #FP #FN Precision(%) Recall(%) F1(%)
Centris 2,977 1,063 1,914 1,087 35.71 49.44 41.47
CCScanner 32,51 1,179 2,072 971 36.27 54.84 43.66
Centrisyiq 1,622 1,230 392 920 75.83 57.21 65.22
Centrisgrgrey, 1,828 1352 476 798 73.96 62.88 67.97
TPLite 1,525 1,347 178 803 88.33 62.65 73.31

Centris,;q = Centris + function-level origin TPL detection
Centrisgsdycq = Centrisysq + coarse-grained detection

12

Evaluation: Binary-level SCA

Subjects The SCA results

100%

. Precision [] Recall F1]

e B2SFinder: state-of-the-art academic binary SCA tool

5% 7

 Black Duck Binary Analysis (BDBA): well-adopted commercial
SCA product by Synopsys >
e Scantist: commercial SCA platform including binary analysis 25% | 1 I
, \¢
Evaluation of SCA e @ 6°““ e'ﬁ? o
e TPLite increases precision (25.76% to 75.90%) and recall
(56.34% to 64.17%) when integrated to BinaryAl Time cost of SCA tools
 TPLite dominates performance among binary SCA tools, and z 2 o
even outperforms BDBA (75.90% vs.72.46% precision, ‘g e g 100 s =
64.17% vs. 58.55% recall) £ S
E > Centris £ > Centris
e Additional overhead of TPLite 1s tolerable for both offline S reLie O CCScanner
TPL reuse detection and online SCA 1K K 7K 10K 1K 4K 7% 10K
Size of SCA Dataset (#TPLs) Size of SCA Dataset (#TPLs)
(a) TPL reuse detection (b) SCA

13

Conclusion

Extensive Study

» Study of Centris, the state-of-the-art SCA technique in the C/C++ ecosystem
» Accuracy of TPL dependencies and impact on SCA may not well generalize to our evaluation dataset

* Function birth time and threshold-based recall can be the factors to degrade the performance

Technique Improvement

* We propose TPLite based on the study findings and we are the first to adapt the TPL dependencies
to the binary-level SCA, both of them outperform the existing state-of-the-art techniques

* Open-sourced technique: https://github.com/Tricker-z/TPLite

14

https://github.com/Tricker-z/TPLite

