
Ling Jiang*, Junwen An*, Huihui Huang*, Qiyi Tang†, Sen Nie†, Shi Wu†, Yuqun Zhang*

*Southern University of Science and Technology
†Tencent Security Keen Lab

: Binary Software Composition 
Analysis via Intelligent Binary Source 

Code Matching

46th International Conference on Software Engineering (ICSE 2024), Lisbon, Portugal www.binaryai.net

http://www.binaryai.net/


46th International Conference on Software Engineering (ICSE 2024), Lisbon, Portugal www.binaryai.net 01

Software Composition Analysis (SCA)

• Identifying open-source third-party libraries (TPLs) contained in software artifacts via 
Code Clone Detection with TPL dataset, integrated into modern DevSecOps

• Tracking potential license violations or 1-day security risks introduced by TPLs for the 
defense of supply-chain attacks

• E.g. SSHD backdoor in xz/liblzma-v5.6.0/5.6.1, CVE-2024-3094

http://binaryai.net/


46th International Conference on Software Engineering (ICSE 2024), Lisbon, Portugal www.binaryai.net 02

Binary Software Composition Analysis 

Binary-to-Binary SCA Binary-to-Source SCA

• TPLs in the SCA database are stored in binary 
format built from source packages

• Existing techniques (e.g., LibDB, ModX) apply 
binary code similarity analysis (BCSA), where 
deep neural network models are integrated to 
embed binary functions for measuring code 
similarity

• Limitations: poor scalability of TPL dataset due 
to intricacies of automatic compilation
(100 in ModX vs. 10K+ in Source SCA)

• TPL dataset consists of large-scale crawled 
open-source C/C++ source projects

• Existing techniques (e.g., OSSPolice, B2SFinder) 
select basic syntactic features that remain 
consistent after compilation (e.g., string 
literals) to match source code

• Limitations: ineffective binary source code 
matching based on basic syntactic features 
due to substantial disparities introduced by 
compilation

🤔
Can we employ fine-grained function-level features to include 
high-level semantic information in binary-to-source SCA?

http://binaryai.net/


46th International Conference on Software Engineering (ICSE 2024), Lisbon, Portugal www.binaryai.net 03

Overview of BinaryAI

Third-party 
Libraries

*Basic Info

Binary-to-Source 
Function Matching

We propose BinaryAI to perform function-level binary source code 
matching for binary-to-source SCA, available as a SaaS product.

http://binaryai.net/


46th International Conference on Software Engineering (ICSE 2024), Lisbon, Portugal www.binaryai.net 04

Overview of BinaryAI

Binary File

TPL Dataset

Binary Function
(query)

Ghidra 
Pseudo-C

Tr
ee

-s
itt

er
 

Pa
rs

er

Source Function
(corpus)

Open-sourced 
C/C++ Code

Fu
nc

tio
n 

Em
be

dd
in

g 
M

od
el

!"

!!

Similar 
Function

Source File

Similar Functions 
with Files

Matched 
Function

Link-time Locality

obj1.o obj2.o obj3.o

file1.c file2.c file3.c

Compiler

Linker

a.out

Third-party Library 
Component

BUG & License 
Threats

SCA Database

1 Feature Extraction 2 Embedding-based Retrieval 3 Locality-driven Matching 4 Third-party Library Detection

• Source Function: 56M+ unique C/C++ functions from 12K+ open-source TPL projects† across all versions
• Binary Function: real-time decompilation with Ghidra to generate C-like pseudo-code representation 

Feature Extraction

† All TPLs BinaryAI can detect with inverted index stored in SCA database by 2024.3.
We deploy continuous supplementation of new TPLs and source functions.

http://binaryai.net/


46th International Conference on Software Engineering (ICSE 2024), Lisbon, Portugal www.binaryai.net 05

Embedding-based Function Retrieval

• Code representation learning for aligning binary and source functions in a single vector space

• Identify similar token-based syntactic features across different code formats (i.e., binary-to-source) 
based on the decoder-only autoregressive language model

• Contrastive learning with labeled binary source function pairs to further pre-train the base model 
acting as the function encoder to generate embeddings†

† Embeddings for all 56M source functions are derived offline and stored to the vector database.

 static const char* DefaultLogDir() { 
   const char* env; 
   env = getenv("GOOGLE_LOG_DIR"); 
   if (env != NULL && env[0] != '\0') { 
     return env; 
   } 
   env = getenv("TEST_TMPDIR"); 
   if (env != NULL && env[0] != '\0') { 
     return env; 
   } 
   return ""; 
 }

 char* FUN_00153d7b(void) { 
   char* pcVar1; 
   pcVar1 = getenv("GOOGLE_LOG_DIR"); 
   if (((pcVar1 == (char*)0x0) ||  
        (*pcVar1 == '\0')) && 
       ((pcVar1 = getenv("TEST_TMPDIR"), 

  pcVar1 == (char*)0x0 || 
       (*pcVar1 == '\0')))) { 
     pcVar1 = ""; 
   } 
   return pcVar1; 
 }

Binary Function (Ghidra Pseudo-C) Source Function (C/C++)

http://binaryai.net/


46th International Conference on Software Engineering (ICSE 2024), Lisbon, Portugal www.binaryai.net 06

Embedding-based Function Retrieval

Source Function

Open-sourced 
C/C++ Code

Binary Function

Ghidra 
Pseudo-C

char FUN _ return pc Var

static const char return env ;

…

…

…

… … … …

…

!!"

!#"

!$"

…

!%"

!!& !#& !$& … !%&

…

…

Fu
nc

tio
n 

Em
be

dd
in

g 
M

od
el

Model Training For BinaryAI

• Base model: OPT ⇨ BLOOM ⇨ Pythia (410M)

• Training dataset: 10M+ function pairs with an 
average of around 500 tokens per function

• Contrastive representation learning :

• Extend the loss function of CLIP

• Apply Momentum Contrast (MoCo) method

• Enlarge in-batch negative samples

http://binaryai.net/


46th International Conference on Software Engineering (ICSE 2024), Lisbon, Portugal www.binaryai.net 07

Binary Source Code Matching: Are we there yet?

🤔
Directly retrieve the top-1 most similar 
source function as the matching result?

int sodium_is_zero( 
const unsigned char *n, 
const size_t nlen 

){ 
size_t i; 
volatile unsigned char d = 0U; 
for (i = 0U; i < nlen; i++) { 
d |= n[i]; 
} 
return 1 & ((d - 1) >> 8); 

}

int sodium_is_zero( 
const unsigned char *n, 
const size_t nlen 

){ 
size_t i; 
unsigned char d = 0U; 
for (i = 0U; i < nlen; i++) { 
d |= n[i]; 
} 
return 1 & ((d - 1) >> 8); 

}

Top-1, score=0.8477 Top-2, score=0.8475
(Ground Truth)

• A significant presence of source functions with subtle 
modifications in the large-scale TPLs

• Token-based syntactic feature captured by embedding 
model is insufficient for accurate matching

http://binaryai.net/


46th International Conference on Software Engineering (ICSE 2024), Lisbon, Portugal www.binaryai.net 08

Locality-driven Matching

crypt_lib.o

math_lib.o

net_lib.o

std_lib.o

main.o

CodeCut

Compile Link

Binary File

crypt_lib.c

std_lib.c

main.c

math_lib.c

net_lib.c

Source File Object File

FUN_000138e3

FUN_00013ac3

FUN_0001596c

…

…

…

Top-k Similar Functions

… Match the source 
function from 

top-k candidates

• Insight: Link-time localities (i.e., relative virtual address) of binary functions compiled from the 
same source file are almost rendered continuous in the address space of the binary file

• Basic workflow:
1. CodeCut: cut intervals with continuous binary functions to recover boundaries of object files
2. Identify source files compiled into the binary file
3. Match the source functions in the files as the result

http://binaryai.net/


46th International Conference on Software Engineering (ICSE 2024), Lisbon, Portugal www.binaryai.net 09

Locality-driven Matching

[FUN_00028061]
00028061    PUSH  EBP
0002806d    ADD    EBX,0xbedcb
00028073 CALL  FUN_000287b3

…
000280a7    CALL   FUN_00025679

[FUN_00025697]
00025697    PUSH  EBP
00025698    MOV   EBP,ESP

[FUN_000287b3]
000287b3    PUSH  EBP
000287b4    MOV   EBP,ESP

cJSON_AddTrueToObject (
    cJSON * const object,
    const char* const name
) {

    cJSON *true_item = cJSON_CreateTrue();
if (add_item_to_object(…)) {

return true_item;
}
cJSON_Delete(true_item);
return NULL;

} 
…

void cJSON_Delete (cJSON *item) {…}
…

cJSON_CreateTrue (void) {…}

FUN_00025697

…

FUN_00028009

FUN_00028061

…

FUN_000287b3

Fu
nc

tio
n 

In
te

rv
al

Section header

Binary File (ELF) Function Call Graph Source File (.c)

ELF header

Binary File Address Space

So
ur

ce
 F

ile
s1. Convert top-k retrieved functions to index mapping 

from source files to binary source function pairs

2. Interval covering problem: source files compiled 
into binary should have longer continuous functions

3. Tackle the problem greedily by prioritizing longer  
intervals (i.e., files) that can cover more functions

4. Utilize function call graph to facilitate binary source 
function matching within selected files

Algorithm

• Syntactic features: function embeddings
• Semantic features: link-time locality, function call graph 

http://binaryai.net/


46th International Conference on Software Engineering (ICSE 2024), Lisbon, Portugal www.binaryai.net 10

Third-party Library Detection

• Calculate the ratio of matched functions as the similarity 
between binary file and source code repository (i.e., TPL)

• Identify the TPL whose similarity exceeds a pre-defined 
threshold, along with potential security threats

• Alleviate the issue of internal code clones by integrating 
TPL dependency to filter invalid TPLs

http://binaryai.net/


46th International Conference on Software Engineering (ICSE 2024), Lisbon, Portugal www.binaryai.net 11

RQ1: Effectiveness of Function Embedding

• BinaryAI achieves 0.3407 MRR (Mean Reciprocal Rank) in contrast to 0.1769 of CodeCMR†, 
increasing recall@1 from 10.75% to 22.54% and recall@100 from 33.87% to 56.60%

• Traditional techniques (BinPro and B2SFinder) incur limited performance in matching 
source functions from a large-scale dataset (MRR<0.005, recall@100<10%)

Finding: BinaryAI can be more effective than CodeCMR and other traditional techniques in terms of the 
embedding-based function retrieval with the usage of LLM and CLIP as the training objective.

† CodeCMR utilizes separate function encoders (DPCNN for source function and GNN for binary function)

http://binaryai.net/


46th International Conference on Software Engineering (ICSE 2024), Lisbon, Portugal www.binaryai.net 12

RQ2: Accuracy of Binary Source Code Matching

Finding: Locality-driven matching can effectively identify 
the exact source function from top-k retrieved results and 
such results generalize to different binary files.

• On average, the precision is 81.63% for exact 
match and 95.86% for fuzzy match†

• In all binary files, the precision exceeds 75% for 
exact match and 90% for fuzzy match

Accuracy of locality-driven matching

† Match ground truth after normalization, applicable for other downstream tasks (e.g., reverse engineering)

• Test set: 15 stripped binary files with manually 
labeled binary-to-source function mappings

• Result with top-10 retrieved functions:

http://www.binaryai.net/


46th International Conference on Software Engineering (ICSE 2024), Lisbon, Portugal www.binaryai.net 13

RQ2: Accuracy of Binary Source Code Matching

BinaryAI CodeCMR

Contribution to binary source code matching

• BinaryAI: recall@1 from 22.73% to 54.70% with upper bound as 57.35% for top-10, and 
to 66.90% with upper bound as 70.45% for top-100

• CodeCMR: recall@1 from 11.92% to 28.61% with upper bound as 33.46% for top-10, and 
to 38.76% with upper bound as 44.89% for top-100

http://binaryai.net/


46th International Conference on Software Engineering (ICSE 2024), Lisbon, Portugal www.binaryai.net 14

RQ3: Accuracy of TPL Detection (BSCA)

0% 25% 50% 75% 100%

OSSPolice

B2SFinder

Scantist

Black Duck

BinaryAI

Precision Recall

Tools #TP #FP #FN Precision Recall F1

OSSPolice 348 191 697 64.56 33.30 43.94

B2SFinder 574 1232 471 31.78 54.93 40.26

Scantist 232 108 813 68.24 22.20 33.50

Black Duck 625 227 420 73.36 59.81 65.90

BinaryAI 679 112 366 85.84 64.98 73.97

• Test Set: 150 stripped binary files from 85 projects, labeled with 1,045 third-party components

• BinaryAI outperforms Black Duck@Synopsys with increased precision from 73.36% to 85.84%
and recall from 59.81% to 64.98%

Finding: BinaryAI dominates the performance of TPL detection 
among the state-of-the-art binary SCA tools.

http://binaryai.net/


46th International Conference on Software Engineering (ICSE 2024), Lisbon, Portugal www.binaryai.net 15

Summarizing BinaryAI

binaryai binaryai-sdk @keen_lab

• The first function-level binary-to-source SCA based on model, 
achieving 85.84% precision and 64.98% recall

• We propose two-phase binary source function matching to 
capture both syntactic and semantic code features

• BinaryAI contains 12K+ TPLs with 56M+ unique functions, 
and the model is trained with 10M+ function pairs

• More features available: IDA/Ghidra plugin, Binary diffing,
Malware analysis, etc

http://binaryai.net/
https://github.com/binaryai/plugins

