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Hybrid Fuzzing = Fuzzing + Concolic Execution
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Fuzzing Concolic Execution
(a.k.a. dynamic symbolic execution)

• Light-weight automated software testing technique 
by generating random test inputs

• Promptly explore the program states, but get stuck 
by hard-to-cover branches
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• Generate test inputs by solving the corresponding 
path constraints via SMT solver

• Significant overhead for symbolic emulation and 
constraint solving



Hybrid Fuzzing: Three Components
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The overall framework of hybrid fuzzing

Coverage-guided Fuzzing Strategy

Concolic Execution (ce)

Coordination Mode

Selecting subjects for 
performing concolic 
execution

Scheduling Synchronization 
Synchronizing the solutions to 
fuzzing to further explore new 
program states



Existing Coordination Modes
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Scheduling (seed-oriented)
• Baseline - Random seed selection

• DigFuzz (NDSS’19) - Monte Carlo-based probabilistic path prioritization model

• MEUZZ (RAID’20) - Machine learning-based regression model

Synchronization

• Baseline - Directly adding the solutions to the seed corpora of fuzzing  

• Pangolin (S&P’20) - Convert solutions to “polyhedral abstraction domain” and 

generate mutants by Dikin walk algorithm



Research Questions
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RQ1: How do hybrid fuzzers perform on top of our benchmark programs?

RQ2: How do existing coordination modes impact hybrid fuzzers?

• Inequivalent evaluation setups (benchmarks & seed corpora) of existing hybrid fuzzers
• Limited performance comparisons among existing hybrid fuzzers
• Lack of insight into the impact of different components on hybrid fuzzing

Challenges

• Performance comparisons among existing hybrid fuzzers
• Impact of fuzzing strategy and concolic execution

• Impact of coordination mode



Study Setups
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Studied Subjects Benchmarks

15 commonly adopted projects in the studied 
subjects with their latest versions

• Hybrid fuzzers published in prestigious conferences
• Conventional coverage-guided fuzzers for comparison 

(AFL, FairFuzz, and AFL++)

Studied hybrid fuzzers Studied real-world benchmark



RQ1: Performance of hybrid fuzzers

06

Edge coverage results of the studied fuzzers within 24 hours

Finding: The edge coverage advantages of hybrid fuzzers over conventional coverage-guided fuzzers 
are somewhat limited, indicating that the power of concolic execution has not been fully leveraged.



RQ1: Performance of hybrid fuzzers
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Number of unique crashes on real-world benchmark 

Finding: Simply updating fuzzing strategies or concolic executors 
alone in hybrid fuzzers leads to limited edge coverage impact.

Finding: Most studied hybrid fuzzers incur rather limited or even no 
advantages over conventional coverage-guided fuzzers in exposing 
unique crashes upon real-world benchmark programs.

Fuzzing strategy: AFL, FairFuzz, AFL++
Concolic executor: QSYM-ce, Angora-ce, Eclipser-ce, Intriguer-ce

Unique crash: 
Testcases that trigger crash with unique execution path

Average edge coverage of reassembled hybrid fuzzing variants



RQ2: Impact of Coordination Mode
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Redundant edge ratio of studied fuzzers

Metric: Redundant edge ratio
The magnitude of the common edges explored by 
the fuzzing strategy and the concolic executor

𝜙(𝐹, 𝐶) =
|𝐹 ∩ 𝐶|
|𝐶|

Hybrid fuzzer Average edge 
coverage

Average redundant 
edge ratio

QSYM 5,763 0.65

DigFuzz 5,321 0.87

MEUZZ 5,422 0.71

Pangolin 5,561 0.82

Average edge coverage and redundant edge ratio

Findings:
• The hybrid fuzzing effectiveness is reflected by redundant edge 

ratio which is highly relevant to their coordination modes.

• The existing effort on strengthening the scheduling and 
synchronization mechanisms causes limited impact on edge 
coverage performance of hybrid fuzzers.



Discussion 1: Scheduling
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Limitations of seed scheduling

Execution path space

𝑎

𝑏

𝑐

¬𝑎

¬𝑏

¬𝑐

0

0.5

1

1.5

1 5 9 13 17 21 25 29

Se
ed

 p
ro

ba
bi

lit
y

Length of execution path (#branch)

readelf

𝑙𝑒𝑛𝑔𝑡ℎ = 3,000

𝑝 = 6.643𝑒 − 250

Seed utility in DigFuzz

• Each edge is negated along the execution path during concolic execution
• Coverage updates of fuzzing strategy and concolic executor are mutually 

non-transparent until synchronization

Ineffectiveness of alleviating redundant edge exploration

Poor scalability of seed utility prediction
• Inaccurate modeling for seed utility due to the features of the 

massive edges along the execution path

Fine-grained edge-oriented scheduling is essential



Discussion 2: Synchronization
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Impact of abstract domains:
• Close effects on limiting the mutation space
• False positives can be quickly filtered by AFL
• One could adopt the interval abstract domain 

with the lowest time cost

Impact of sampling algorithms:

Shape

Different abstraction domains and sampling algorithms

• John walk and Vaidya walk achieve better performance 
than Dikin walk and Hit-and-Run

• Generally 𝑛 ≫ 𝑑 in concolic execution (𝑛 ≥ 2𝑑)
• More efficient to apply John walk

Average edge coverage of Pangolin variants



Approach: CoFuzz
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The framework of CoFuzz

CoFuzz - Coordinated Hybrid Fuzzing Framework with Advanced Coordination Mode

Coverage-guided Fuzzing Strategy

Concolic Execution 

Coordination Mode

• AFL-2.57b

• QSYM-ce

• Edge-oriented Scheduling (discussion 1)
• Sampling-augmenting Synchronization (discussion 2)



CoFuzz: Advanced Coordination Mode
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Edge-oriented Scheduling

• Schedule edges to perform concolic execution

• Predict edge utility using the online regression model 
with Stochastic Gradient Descent (SGD)

• Feature engineering

- Count of unexplored sibling edges
- Normalized mutant amount
- Conditional branch type & bit width
- …

scheduling



CoFuzz: Advanced Coordination Mode
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Sampling-augmenting Synchronization

synchronization

• John walk within the interval abstraction domain

• Incremental learning

- Collect the coverage updates as labels to update the 
online SGD regressor

- Enhance the prediction accuracy during scheduling

- Increase the edge coverage by generating mutants 
sampled within the limited mutation space



Evaluation: Edge Coverage
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CoFuzz#$% - edge-oriented scheduling only
CoFuzz#&'$ - sampling-augmenting synchronization only

• CoFuzz outperforms AFL by 32.44% and QSYM by 16.31%

• Mann Whitney U-test with a one-tailed hypothesis to measure 
the significance against QSYM (level = 0.05)

• Ablation study with CoFuzz variants

Edge Coverage Result

Edge coverage result of CoFuzz



Evaluation: Edge Coverage
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The edge coverage results of CoFuzz over time



Evaluation: BUG Detection
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LAVA-M Dataset Real-world Benchmarks
• 2X more unique crashes
• 37 previously unknown bugs with 8 new CVEs

• Fully expose the injected bugs with less bug 
survival time in the subjects base64, md5sum, uniq

• Expose the most bugs in who and outperform 
Angora by 23.66%

Bug results of CoFuzz on LAVA-M



Conclusion
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Extensive Study

Technique Improvement

• Hybrid fuzzing framework CoFuzz based on findings that significantly outperform 
the existing hybrid fuzzers in terms of edge coverage and bug detection

• Open-sourced fuzzing approach

• Study the state-of-the-art hybrid fuzzers on a comprehensive benchmark suite

• The performance of existing hybrid fuzzers may not well generalize to other experimental settings

• The coordination mode can be a crucial factor to augment the performance of hybrid fuzzers

https://github.com/Tricker-z/CoFuzz

