
Evaluating and Improving
Hybrid Fuzzing

Ling Jiang, Hengchen Yuan, Mingyuan Wu,
Lingming Zhang, Yuqun Zhang

Hybrid Fuzzing = Fuzzing + Concolic Execution

01

Fuzzing Concolic Execution
(a.k.a. dynamic symbolic execution)

• Light-weight automated software testing technique
by generating random test inputs

• Promptly explore the program states, but get stuck
by hard-to-cover branches

b1

b2

𝜓! ¬𝜓!

. . .
𝜓" ¬𝜓"

Solve constraints:
¬𝜓!, 𝜓! ∧ ¬𝜓"

• Generate test inputs by solving the corresponding
path constraints via SMT solver

• Significant overhead for symbolic emulation and
constraint solving

Hybrid Fuzzing: Three Components

02

The overall framework of hybrid fuzzing

Coverage-guided Fuzzing Strategy

Concolic Execution (ce)

Coordination Mode

Selecting subjects for
performing concolic
execution

Scheduling Synchronization
Synchronizing the solutions to
fuzzing to further explore new
program states

Existing Coordination Modes

03

Scheduling (seed-oriented)
• Baseline - Random seed selection

• DigFuzz (NDSS’19) - Monte Carlo-based probabilistic path prioritization model

• MEUZZ (RAID’20) - Machine learning-based regression model

Synchronization

• Baseline - Directly adding the solutions to the seed corpora of fuzzing

• Pangolin (S&P’20) - Convert solutions to “polyhedral abstraction domain” and

generate mutants by Dikin walk algorithm

Research Questions

04

RQ1: How do hybrid fuzzers perform on top of our benchmark programs?

RQ2: How do existing coordination modes impact hybrid fuzzers?

• Inequivalent evaluation setups (benchmarks & seed corpora) of existing hybrid fuzzers
• Limited performance comparisons among existing hybrid fuzzers
• Lack of insight into the impact of different components on hybrid fuzzing

Challenges

• Performance comparisons among existing hybrid fuzzers
• Impact of fuzzing strategy and concolic execution

• Impact of coordination mode

Study Setups

05

Studied Subjects Benchmarks

15 commonly adopted projects in the studied
subjects with their latest versions

• Hybrid fuzzers published in prestigious conferences
• Conventional coverage-guided fuzzers for comparison

(AFL, FairFuzz, and AFL++)

Studied hybrid fuzzers Studied real-world benchmark

RQ1: Performance of hybrid fuzzers

06

Edge coverage results of the studied fuzzers within 24 hours

Finding: The edge coverage advantages of hybrid fuzzers over conventional coverage-guided fuzzers
are somewhat limited, indicating that the power of concolic execution has not been fully leveraged.

RQ1: Performance of hybrid fuzzers

07

Number of unique crashes on real-world benchmark

Finding: Simply updating fuzzing strategies or concolic executors
alone in hybrid fuzzers leads to limited edge coverage impact.

Finding: Most studied hybrid fuzzers incur rather limited or even no
advantages over conventional coverage-guided fuzzers in exposing
unique crashes upon real-world benchmark programs.

Fuzzing strategy: AFL, FairFuzz, AFL++
Concolic executor: QSYM-ce, Angora-ce, Eclipser-ce, Intriguer-ce

Unique crash:
Testcases that trigger crash with unique execution path

Average edge coverage of reassembled hybrid fuzzing variants

RQ2: Impact of Coordination Mode

08

Redundant edge ratio of studied fuzzers

Metric: Redundant edge ratio
The magnitude of the common edges explored by
the fuzzing strategy and the concolic executor

𝜙(𝐹, 𝐶) =
|𝐹 ∩ 𝐶|
|𝐶|

Hybrid fuzzer Average edge
coverage

Average redundant
edge ratio

QSYM 5,763 0.65

DigFuzz 5,321 0.87

MEUZZ 5,422 0.71

Pangolin 5,561 0.82

Average edge coverage and redundant edge ratio

Findings:
• The hybrid fuzzing effectiveness is reflected by redundant edge

ratio which is highly relevant to their coordination modes.

• The existing effort on strengthening the scheduling and
synchronization mechanisms causes limited impact on edge
coverage performance of hybrid fuzzers.

Discussion 1: Scheduling

09

Limitations of seed scheduling

Execution path space

𝑎

𝑏

𝑐

¬𝑎

¬𝑏

¬𝑐

0

0.5

1

1.5

1 5 9 13 17 21 25 29

Se
ed

 p
ro

ba
bi

lit
y

Length of execution path (#branch)

readelf

𝑙𝑒𝑛𝑔𝑡ℎ = 3,000

𝑝 = 6.643𝑒 − 250

Seed utility in DigFuzz

• Each edge is negated along the execution path during concolic execution
• Coverage updates of fuzzing strategy and concolic executor are mutually

non-transparent until synchronization

Ineffectiveness of alleviating redundant edge exploration

Poor scalability of seed utility prediction
• Inaccurate modeling for seed utility due to the features of the

massive edges along the execution path

Fine-grained edge-oriented scheduling is essential

Discussion 2: Synchronization

10

Impact of abstract domains:
• Close effects on limiting the mutation space
• False positives can be quickly filtered by AFL
• One could adopt the interval abstract domain

with the lowest time cost

Impact of sampling algorithms:

Shape

Different abstraction domains and sampling algorithms

• John walk and Vaidya walk achieve better performance
than Dikin walk and Hit-and-Run

• Generally 𝑛 ≫ 𝑑 in concolic execution (𝑛 ≥ 2𝑑)
• More efficient to apply John walk

Average edge coverage of Pangolin variants

Approach: CoFuzz

11

The framework of CoFuzz

CoFuzz - Coordinated Hybrid Fuzzing Framework with Advanced Coordination Mode

Coverage-guided Fuzzing Strategy

Concolic Execution

Coordination Mode

• AFL-2.57b

• QSYM-ce

• Edge-oriented Scheduling (discussion 1)
• Sampling-augmenting Synchronization (discussion 2)

CoFuzz: Advanced Coordination Mode

12

Edge-oriented Scheduling

• Schedule edges to perform concolic execution

• Predict edge utility using the online regression model
with Stochastic Gradient Descent (SGD)

• Feature engineering

- Count of unexplored sibling edges
- Normalized mutant amount
- Conditional branch type & bit width
- …

scheduling

CoFuzz: Advanced Coordination Mode

13

Sampling-augmenting Synchronization

synchronization

• John walk within the interval abstraction domain

• Incremental learning

- Collect the coverage updates as labels to update the
online SGD regressor

- Enhance the prediction accuracy during scheduling

- Increase the edge coverage by generating mutants
sampled within the limited mutation space

Evaluation: Edge Coverage

14

CoFuzz#$% - edge-oriented scheduling only
CoFuzz#&'$ - sampling-augmenting synchronization only

• CoFuzz outperforms AFL by 32.44% and QSYM by 16.31%

• Mann Whitney U-test with a one-tailed hypothesis to measure
the significance against QSYM (level = 0.05)

• Ablation study with CoFuzz variants

Edge Coverage Result

Edge coverage result of CoFuzz

Evaluation: Edge Coverage

15

The edge coverage results of CoFuzz over time

Evaluation: BUG Detection

16

LAVA-M Dataset Real-world Benchmarks
• 2X more unique crashes
• 37 previously unknown bugs with 8 new CVEs

• Fully expose the injected bugs with less bug
survival time in the subjects base64, md5sum, uniq

• Expose the most bugs in who and outperform
Angora by 23.66%

Bug results of CoFuzz on LAVA-M

Conclusion

17

Extensive Study

Technique Improvement

• Hybrid fuzzing framework CoFuzz based on findings that significantly outperform
the existing hybrid fuzzers in terms of edge coverage and bug detection

• Open-sourced fuzzing approach

• Study the state-of-the-art hybrid fuzzers on a comprehensive benchmark suite

• The performance of existing hybrid fuzzers may not well generalize to other experimental settings

• The coordination mode can be a crucial factor to augment the performance of hybrid fuzzers

https://github.com/Tricker-z/CoFuzz

